MOVEMENT OF GRADED SEDIMENT WITH DIFFERENT SIZE RANGES
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ABSTRACT

Bagnold’s (1980) empirical correlation is one of the most applicable bed load relationships in the literature.  However, few drawbacks still exist in Bagnold’s correlation.  In this study, a modified Bagnold’s (1980) formula was proposed and tested with both reliable laboratory and field data under a wide range of sediment and flow conditions.  In general, it was found that the modified Bagnold’s formula provided better results on the prediction of sediment transport rates for most of the conditions tested.  The phenomenon of selective transport for different sediment sizes for both the unimodal and bimodal bed materials were also analyzed based on the reliable flume and river data.

	Key Words:
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I. INTRODUCTION

Numerous sediment transport equations have been proposed in the past few decades.  The applicability of each of the sediment transport equation proposed is restricted by the data range from which the equation was developed.

Bagnold (1980) proposed an empirical bed load equation using a stream power as the dominant independent variable (see Appendix Ⅲ for details). A significant amount of data collected from both natural rivers and small laboratory flumes was used to test the proposed correlation, and reasonably good results were obtained.

Few drawbacks, however, still exist in Bagnold’s (1980) correlation.  First, a constant value of 0.04 for the dimensionless Shields parameter was adopted in the calculation of the threshold stream power.  Second, the mode size (or median size if mode size is unknown ) was selected as the representative particle size for a unimodal bed, and these modes were used as the representative sizes for a bimodal bed in calculating the sediment transport rates with Bagnold’s (1980) equation.  In the case of bimodal rivers, where the behavior of the two size groups of sediment cannot be independent of one another, a common threshold stream power, 
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was assumed.  This value was adopted, except where the data demands a smaller value, to avoid a negative 
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.  However, the selection of “a smaller value” was somewhat subjective.
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The process of initiation of sediment motion is statistical in nature.  Shields’(1936) curve or the revised curve (Miller et al., 1977 ; Vanoni, 1977) were usually adopted to estimate the critical shear stress.  However, these curves were developed based on nearly unisize sediment.  Also, the dimensionless Shields parameter approaches a constant value only for a high boundary particle Reynolds number (
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 ; Vanoni, 1977).  The incipient motion for grains in a mixture of sizes has also been studied for the past fifteen years (White and Day, 1982; Wiberg and Smith, 1987; Wilcock and Southard, 1988; Kuhnle, 1993).  Bed shear stress at incipient motion for a mixture can be defined following the technique of Parker et al. (1982).  In this work, the bed shear stress and sediment transport rate were nondimensionalized as follows:
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where 
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bed shear stress; 
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fraction of the ith size contained in the bed material.  The bed shear stress at incipient motion (or reference shear stress, 
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.  This shear stress corresponds to a very low rate of sediment transport.

The main objectives of this study were (1)to modify Bagnold’s (1980) empirical equation for the estimation of sediment transport rates for nonuniform sediment; (2)to collect additional flume data with graded sediment and steep gradients for testing the modified Bagnold’s (1980) equation; (3)to analyze the interaction of the movement of different sediment particles in a sediment mixture.

II. LABORATORY EXPERIMENT

Mountain streams are characterized by steep slopes and large roughness elements.  Reliable flume data with graded gravel collected under steep gradient conditions are still very limited in the literature.  In this study, a series of laboratory experiments were conducted using a steep recirculating flume to collect bedload data for testing the sediment transport equations in the following section (section 3.3).

The laboratory flume used for the experiment was 0.6 m wide, 0.6 m high, and 11.1 m long.  The adjustable range of the flume slope was 0-15 %, and the maximum discharge was 0.15 m2/s.  The recirculating flume and the other related research apparatus are shown in Fig.1.

A specially designed sediment feeding system with a maximum feeding rate of approximately 700 kg/min was designed in this study.  The feeding rate of the sediment was controlled by the rotational speed of a belt.  The relationship between the sediment feeding rate and the rotational speed is shown in Fig.2.
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Fig. 1  Schematic diagram of recirculating flume 
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Fig. 2  Relationship between sediment feeding rate and rotational speed of belt

The natural river sediment particles used for this experiment were sieved from an aggregate supply company located in the central region of Taiwan.  The nonuniform material varied from 1.18 mm to 50.8 mm with a median size of 7.5 mm.  The standard deviation of the sediment σ
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 was 3.0.  The dry specific gravity of the material was about 2.65.  The grain size distribution of the material is shown in Fig.4.

The major independent variables chosen in the experimental design of this study
[image: image17.wmf]were the bed slope and the flow discharge.  Three levels for the initial bed slope, 2%, 5%, and 8%, and three levels for the unit flow discharge 0.045, 0.090, and 0.135 m2/s were selected in the experimental program.  All of the values of the Froude number for the current experimental runs were greater than one.  In other words, all of them belong to the supercritical flow.

The detailed procedures of this experiment are given in Su (1995) and Huang (1998).  The data collected are summarized in Table 1. The average water temperature was about 20℃(±2℃).

Table 1  Summary of experimental conditions (C.E.Ⅲ)

	Run

Number

(1)
	Flow

Discharge

(m3/s)

(2)
	Flow

Depth

(m)

(3)
	Final Water

Surface Slope

(%)

(4)
	Sediment

Transport Rate
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	R311.1
	0.027
	0.0639 
	2.18 
	0.3366

	R311.2
	0.027
	0.0672 
	2.68 
	0.3975

	R312.1
	0.027
	0.0589 
	5.24 
	3.9114

	R312.2
	0.027
	0.0556 
	6.23 
	3.9326

	R313.1
	0.027
	0.0550 
	8.81 
	7.5976

	R313.2
	0.027
	0.0550 
	9.80 
	8.1753

	R313.1
	0.054
	0.0861 
	2.18 
	0.5592

	R321.2
	0.054
	0.0888 
	2.34 
	0.5698

	R322.1
	0.054
	0.0800 
	5.09 
	6.1454

	R322.2
	0.054
	0.0850 
	5.19 
	6.2010

	R323.1
	0.054
	0.0825 
	6.97 
	11.2628

	R323.2
	0.054
	0.0800 
	7.03 
	11.1965

	R331.1
	0.081
	0.1143 
	1.87 
	1.3913

	R331.2
	0.081
	0.1083 
	2.03 
	1.3065

	R332.1
	0.081
	0.0950 
	4.82 
	7.0543

	R332.2
	0.081
	0.0950 
	4.82 
	7.4545

	R333.1
	0.081
	0.0850 
	8.01 
	14.4611

	R333.2
	0.081
	0.0850 
	7.17 
	14.0702


III. MODIFICATIONS OF BAGNOLD’S FORMULA

3.1 Necessities of modification –representative sizes and threshold criterion

Different representative particle sizes have been chosen in the calculation of the sediment transport rates for nonuniform sediment.  For example, 
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 were selected by Einstein (1950), Colby (1964) and Meyer-Peter and Müller (1948), respectively in their sediment transport relationships.

For unimodal bed materials, Bagnold (1980) suggested that the mode or “ peak “ size be used.  However, where detailed size analyses are not given, the median size 
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 must be accepted.  The threshold stream power 
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 in Bagnold’s (1980) formula was defined in terms of Shields’ threshold criterion 
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 was assumed to have a constant value of 0.04.  In this study, the value of 
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 was calculated from the modified Shields diagram (Miller et al., 1977).

For bimodal bed materials with two mode sizes 
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, Bagnold (1980) made separate computations, one for each value of 
[image: image29.wmf]D

.  A common threshold power 
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) was adopted except where the data demands a “somewhat smaller value” to avoid a negative 
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.  However, as mentioned earlier, the selection of the “smaller value” is somewhat subjective.  To minimize this drawback, in this study, the representative size was assumed to be the weighted average value 
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, where w1 and w2 are the weighting factors (or the fractions ) corresponding to the bed material with modes 
[image: image35.wmf]1

D

 and 
[image: image36.wmf]2

D

 respectively.  The threshold stream power 
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 [ Note that when w1=w2=50 %, this equation is identical to Bagnold’s (1980) original relationship, i,e. 
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 ].  Similar to the case with unimodal bed material, the threshold stream powers (
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 were calculated using Shields diagram (Miller et al., 1977).

3.2 Available data

To test the modified Bagnold’s (1980) formula as proposed in Section 3.1, both the laboratory and the field data with 114 sets of unimodal and bimodal bed materials in the literature were selected.  For the laboratory data, Wilcock’s (1987) data with unimodal bed material, Kuhnle’s (1994) data with both unimodal and bimodal bed materials, and Wu’s (1998) data with weak bimodal bed material (see Section II) were chosen.  For the field data, Hollingshed’s (1972) Elbow River data with unimodal bed material (1967-1969) and Emmett’s (1979) Tanaca River data with bimodal bed material (1977-1978) were included in the analysis.

Fig. 3 gives the particle size distributions of the unimodal bed materials, including both nearly uniform and log-normal distributions, with particle sizes ranging from 0.2 mm to 100 mm.  Fig. 4 shows the particle size distributions of the bimodal bed materials with particles ranging from 0.08 mm to 50 mm.  The properties of the grain size distributions and the hydraulic properties of the selected data are given in Table 2 and Table 3, respectively.  The flow discharge ranged from 0.0104 to 1,678 m3/s, the channel width ranged from 0.356 to 424 m, the flow depth varied from 0.06 to 2.83 m, and the water surface slope varied from 0.745 % to 9.8 %.
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	Fig. 3
	Particle size distributions of the unimodal bed materials 
	Fig. 4
	Particle size distributions of the bimodal bed materirals 


Table 2  Properties of grain-size distributions
	Type

 of

Data
	References


	Type of Mixture 
	Dm

(mm)
	D16

(mm)
	D50

(mm)
	D84

(mm)
	Dmode

(mm)
	Ds

(mm)
	DG
(mm)
	σ
(geom.)

	Flume Data
	Kuhnle (1994) Sand 100%  
	Unisize
	0.49
	0.32
	0.476
	0.67
	0.48
	 ―
	 ―
	1.45

	
	Kuhnle (1994) SG10
	Strongly bimodal
	1.06
	0.32
	0.48
	1.14
	 ―
	0.43
	4.70
	1.89

	
	Kuhnle (1994) SG25
	Strongly bimodal
	1.88
	0.35
	0.57
	5.05
	 ―
	0.51
	5.20
	3.80

	
	Kuhnle (1994) SG45
	Strongly bimodal
	2.93
	0.37
	0.94
	6.22
	 ―
	0.50
	5.10
	4.10

	
	Kuhnle (1994) Gravel 100%
	Unisize
	5.85
	4.50
	5.579
	7.60
	5.00
	 ―
	 ―
	1.30

	
	Wilcock (1987) MUNI
	≒Unisize
	1.87
	1.63
	1.86
	2.16
	1.87  
	 ―
	 ―
	1.15

	
	Wilcock (1987) MIT 1/2 Φ
	Log-normal
	1.83
	1.25
	1.82
	2.49
	1.84  
	 ―
	 ―
	1.41

	
	Wilcock (1987) MIT 1 Φ
	Log-normal
	1.85
	0.89
	1.83
	3.53 
	1.85  
	 ―
	 ―
	1.99

	
	Wu (1998) C.E.Ⅲ
	Weakly bimodal
	10.4
	2.80
	7.50
	26.0
	 ―
	2.20
	13.5
	3.00

	Field Data
	Emmett (1979) Tanaca River


	Strongly bimodal

Strongly bimodal
	2.49

8.13
	0.16

0.22
	2.80

7.0
	5.0

15.6
	 ―
 ―
	0.32

0.25
	18.0

13.0
	5.59

8.41

	
	Hollingshead (1972) Elbow

River
	Log-normal
	32.44
	13.5
	25.0
	58.4
	20.0
	 ―
	 ―
	2.08


Table 3  Hydraulic properties of experimental data for testing the modified formula

	Type

 of

Data
	References
	No 

of Data

(1)
	Flow

Discharge

(m3/s)

(2)
	Flume

Width

(m)

(3)
	Flow

Depth

(m)

(4)
	Final Water

Surface

Slope

(%)

(5)
	Sediment

Transport

Rate
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	Flume Data
	Kuhnle (1994) Sand 100%
	4
	0.0105-0.0168
	0.356
	0.1039-0.1073
	0.038-0.208
	0.0000065-0.02062

	
	Kuhnle (1994) SG10
	6
	0.0104-0.0295
	0.356
	0.1049-0.1073
	0.038-0.373
	0.000045-0.1530

	
	Kuhnle (1994) SG25
	6
	0.0104-0.0293
	0.356
	0.1013-0.1054
	0.0407-0.470
	0.0000040-0.1690

	
	Kuhnle (1994) SG45
	6
	0.0120-0.0287
	0.356
	0.1012-0.1070
	0.091-0.418
	0.000076-0.1422

	
	Kuhnle (1994) Gravel 100%
	4
	0.0256-0.0302
	0.356
	0.1026-0.1052
	0.428-0.514
	0.00021-0.02406

	
	Wilcock (1987) MUNI
	6
	0.0306-0.0557
	0.60
	0.1140-0.1280
	0.096-0.293
	0.00000185-0.0464

	
	Wilcock (1987) MIT 1/2Φ
	7
	0.0278-0.0549
	0.60
	0.1100-0.1170
	0.100-0.490
	0.0000144-0.0970

	
	Wilcock (1987) MIT 1Φ
	11
	0.0286-0.0377
	0.60
	0.1090-0.1130
	0.104-0.330
	0.0000159-0.0594

	
	Wu (1998) C.E.Ⅲ
	18
	0.0270-0.0810
	0.60
	0.060-0.110
	1.87-9.80
	0.3366-14.4611

	Field Data
	Emmett (1979) Tanaca River
	21
	410-1678
	98-424
	2.26-2.83
	0.44-0.53
	0.016-0.151

	
	Hollingshead (1972) Elbow River
	25
	35.4-109.0
	6.1-24.4
	0.6092-0.8830
	0.745
	0.002-2.80

	         Total
	114
	0.0104-1678
	0.356-424
	0.060-2.830
	0.745-9.80
	0.00000185-14.4611


3.3 Tested results

From the probability theory it follows (see e.g. Mood et al., 1974) that when the coefficient of skewness Cs>0, the particle size distribution is skewed to the right (i.e. positively skewed), and that Dmode< D50< Dm, (where Dmode=mode size, D50=median size, and Dm=mean size).  In contrast to this, if Cs<0, the particle size distribution is skewed to the left (negatively skewed), and Dmode> D50> Dm.

Fig.5 shows the calculated values of the “reference shear stress” 
[image: image46.wmf]r

t

 (Wilcock, 1987; Kuhnle, 1994) based on Dmode (A), D50 (B), and Dm (C) for the unimodal bed materials.  The Shields curve proposed by Miller (1977), the incipient criterion 
[image: image47.wmf]*

c

t

=0.04 as suggested by Bagnold (1980), and a dashed curve (
[image: image48.wmf]s
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) representing the critical condition of initial sediment suspension (Bagnold, 1966) are also plotted in this figure for comparison.  Fig.5 indicates that, for the laboratory data, the results based on Dmode, D50 and Dm were fairly close to each other and they were also very close to the Shields curve proposed by Miller (1977, solid curve). However, for the field data (Elbow River), the differences due to Dmode, D50 and Dm were detectable, and the deviations between these data points and the Shields curve proposed by Miller (1977) were significant.
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Fig. 5
	Calculated reference shear stress vs. particle size for unimodal bed materials


 (A=mode size, Dmode;  B=median, D50;  C=mean size, Dm)

There were at least two possible explanations for the results of the Elbow river.  First, for mountain rivers or rivers with steep gradients, the sediment load is usually limited by the supply rate (detachment limiting) from the source area rather than the sediment transport capacity (Simons & Sentürk, 1992; Bathurst, 1978).  Second, based on the limited data, the dimensionless critical shear stress 
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For the bimodal bed material, as mentioned in Section 3.1, a weighted average particle size 
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 was suggested to be the representative size for calculating the sediment transport rate in the modified Bagnold’s formula.  When either 
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(% of gravel) is zero, the representative size becomes the mode size of the unimodal bed material.

Fig. 6 shows the calculated values for the “reference shear stress”
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 (Wilcocks, 1987; Kuhnle, 1994) for the bimodal bed materials.  The Shields curve proposed by Miller (1977), the incipient criterion 
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) representing the critical condition of initial sediment suspension (Bagnold, 1966) are also plotted in the figure for comparison.  In addition, for each bed material, the mode size of sand (
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, hallow symbol), the mode size of gravel (
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, solid symbol), and the weighted representative particle size (semi-solid symbol, with weighted 
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 value) are also plotted in the figure.

In Fig. 6, the semi-solid symbols (weighted 
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 vs. weighted 
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 values) fell slightly below theShields curve (Miller, 1977) for 
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>500.  Shen and Lu (1983) found that the turbulence level, particle protrusion, and the gradation of the particle sizes had a significant effect on the critical shear stress.  Quantitative modification of the Shields diagram for nonuniform sediment sizes with bimodal distribution is not yet available.  In this study, the critical shear stress was calculated with a Miller’s (1977) Shields curve based on the weighted mode size. 
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	Fig. 6
	Calculated reference shear stress vs. particle size for bimodal bed materials


Table 4  Comparison of computed and measured bed-load

	Type

 of

Data


	References
	Type of Mixture 
	% of Predicted Bed Load in 

Discrepancy Range

	
	
	
	1/2≦δ≦2
	1/3≦δ≦3

	
	
	
	Bagnold
	Wu
	Bagnold
	Wu

	Flume

Data
	Kuhnle (1994) Sand 100%
	Unisize
	50
	75
	75
	75

	
	Kuhnle (1994) SG10
	Strongly bimodal
	83
	83
	83
	83

	
	Kuhnle (1994) SG25
	Strongly bimodal
	50
	83
	67
	83

	
	Kuhnle (1994) SG45
	Strongly bimodal
	33
	67
	50
	83

	
	Kuhnle (1994) Gravel 100%
	Unisize
	75
	100
	75
	100

	
	Wilcock (1987) MUNI
	≒Unisize
	17
	67
	50
	100

	
	Wilcock (1987) MIT 1/2 Φ
	Log-normal
	29
	86
	57
	86

	
	Wilcock (1987) MIT 1 Φ
	Log-normal
	9
	64
	55
	82

	
	Wu (1998) C.E.Ⅲ
	Weakly Bimodal
	56
	89
	100
	100

	Field Data
	Emmett (1979) Tanaca River
	Strongly bimodal
	52
	62
	81
	90

	
	Hollingshead (1972) Elbow River
	Log-normal
	50
	58
	73
	81

	Percentage
	46 %
	76 %
	70 %
	88 %


Discrepancy ratio δ=Computed ib / Measured ib
Table 4 gives a comparison of the measured and computed bed load for both Bagnold’s (1980) and the modified Bagnold’s (designated as “Wu”) methods.  The parameter 
[image: image74.wmf]d

 in Table 4 is the discrepancy ratio, i.e. the ratio of the computed bed load to the measured bed load.  The percentages falling within the ranges 1/2≦
[image: image75.wmf]d

≦2.0, and 1/3≦
[image: image76.wmf]d

≦3.0 for both methods are listed in the table.  As can be seen from the table, in general, the percentage using the modified method (“Wu”) was higher than the corresponding value using the original Bagnold’s (1980) method.

Fig. 7 shows the relationships between the measured and predicted bed load using both the original Bagnold’s (1980) formula and the modified formula (“Wu”).  Three straight lines corresponding to the discrepancy ratios of 2.0, 1.0 and 0.5 are also shown in the figure.  As can be seen in the figure, for high bed load rates ( 
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 greater than about 
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), both methods gave fairly good predictions.  For median and low bed load rates (
[image: image80.wmf]b

i

 less than about 0.01 
[image: image81.wmf]s
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/
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×

), the modified method provided better predictions.  In Fig. 7, for the convenience of presentation, the predicted 
[image: image82.wmf]b
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 value was assumed to be a very small value of 10-8 
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 if 
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<

.  Based on the actual calculations, it was found that there were six sets and one set of data with 
[image: image85.wmf]0
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<

 for the original Bagnold’s (1980) formula and the modified formula (“Wu”), respectively.  Although the sediment transport rate for most of these data were small (<10-4 
[image: image86.wmf]s
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/

kg

×

), it still implies that one needs to further investigate the criterion of incipient motion for nonuniform sediment under different flow conditions.
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	Fig. 7
	Measured vs. predicted bed load using both the original Bagnold’s formula and

the modified formula (Wu)；δ=discrepancy ratio


IV. HIDING EFFECT AND SELECTIVE TRANSPORT

4.1 Derivation of hiding function & sediment transport relationship
The bed material of a gravel river bed usually contains a broad range of grain sizes, at times from fine sand to large boulders.  Therefore, the movement of grains in a gravel bed is much more selective than that in a sandy river.  In this section, Diplas’ (1987) theory with a hiding function is adopted to analyze the selective transport of sediment particles for both the unimodal and the bimodal bed materials.

With consideration of the assumptions and the data needs of Diplas’ (1987) theory, the laboratorydata with unimodal (MIT, 1
[image: image87.wmf]F

) collected by Wilcock (1987) and the field data with bimodal distribution (Goodwin Creek) collected by Kuhnle (personal communication) were selected for the analysis.  The derivations of the hiding functions and the sediment transport relationships are briefly summarized as follows (see Diplas 1987 for detailed procedure) :
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	the data for Goodwin Creek


1. The bed materials were divided into five and eight grain-size ranges, respectively for Wilcock and Kuhnle’s data.  The dimensionless bedload for each size range, 
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2. The relation for the reference Shields stresses 
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where 
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3. The dimensionless sediment transport rate 
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where 
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4. In the case of a sediment mixture, the coarser particles project into the flow further than the finer ones.  As a result, the mobility of the larger (smaller) particles increased (decreased) in comparison to their mobility as part of a uniform material of the same size.  The dimensionless bed load rate can be expressed as 
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 EMBED Equation.3  [image: image111.wmf]is called the reduced hiding function, which can be derived from Eqs. (3) and (4).  Based on the actual measurements, the following forms of the reduced hiding functions for Wilcock’s (unimodal) and Kuhnle’s (bimodal) data were derived by the authors 
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bimodal:   
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5. Using Eq.(2), the dimensionless sediment transport relation, Eq.(4) can be converted into a dimensional form which can be utilized for practical applications.  Thus, the bedload formulae for Wilcock and Kuhnle’s data can be converted into the following forms:
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bimodal    
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4.2 Discussions

For the convenience of discussion, the reduced hiding functions Eqs. (6) and (7) are plotted in Figs.10 and 11, respectively.  The standard deviation σof the bed material for Wilcock’s data (unimodal) was 1.99; and σ=5.4 and 6.9 for two sets of data (station 2) from Goodwin Creek (bimodal).  In Fig. 10, it can be seen that the range of 
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was approximately 0.98~1.05 for the experimental conditions considered (
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 0.75≦Di/D50≧3.35; and 1.05≦Φ50≧3.34).  The fact that the value of 
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 was very close to 1.0 implies that the condition of equal mobility for all grain sizes was nearly true for the unimodal bed material with small σ value (σ(2.0 in Fig. 3 ).

Fig. 11 shows the variation of the reduced hiding function 
[image: image123.wmf]1

h

with dimensionless particle size Di/D50 and the flow intensity parameter Φ50 for the field data of Goodwin Creek (bimodal).  As can be seen in the figure, for Φ50 values larger than approximately 2.0, the coarser particles become more mobile than the finer ones.  The actual measured particle size distributions for the subsurface material and the bed load with different flow intensities (Φ50=0.89~4.34) are plotted in Fig. 12.  As shown in the figure, in general, the median size of the bed load increased with an increase in the value of the flow intensity parameterΦ50.
Fig. 13 shows a comparison of the measured and the predicted bed load rates based on Eqs. 8 & 9. Three straight lines corresponding to the discrepancy ratios of 2.0, 1.0 and 0.5 are also plotted in the figure.  It was found that 65 % and 83 % of the data fell within the discrepancy intervals of 1/2≦δ≦2.0 and 1/3≦δ≦3.0, respectively. 

V. SUMMARY AND CONCLUSIONS

Based on the laboratory experiments and the data analysis performed in this study, the following conclusions can be drawn:

1. A series of experiments for a weakly bimodal bed material with steep slope gradients were conducted.  The data collected were useful to widen the applicability of the sediment transport relationships for gravel bed rivers.

2. A modified Bagnold’s (1980) formula was proposed and tested with both reliable laboratory and field data under a wide range of sediment (unimodal and bimodal) and flow conditions. Two of the major modifications on Bagnold’s (1980) formula were: 

(a)A weighted mode size was used as a representative size to calculate the sediment transport rate for the bimodal bed material (instead of a geometric mean of the modes for sand and gravel).

(b)Instead of calculating critical shear stress based on a constant value of dimensionless critical shear stress 
[image: image124.wmf]*

t

c

=0.04, the critical shear stress was calculated using the weighted mode size and the Shields diagram (Miller, 1977).  

In general, the modified Bagnold’s formula provided better results in the prediction of sediment transport rates for most of the conditions tested.

3. The phenomenon of selective transport for different sizes of sediment particles in a nonuniform mixture was analyzed using Diplas’ theory with a hiding function.  It was found that for the unimodal bed material, all grain sizes had approximately “equal mobility”.  For bimodal bed material with a wide gradation in Goodwin Creek, the size of the bed load varied with the normalized Shields stress Φ50.

4. The estimation of the critical shear stress for nonuniform sediment under different flow conditions is an important and difficult task.  More laboratory and field tests are still needed to increase our understanding of this problem.
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Appendix II.  NOTATION

The following symbols are used in this paper:
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Appendix III.  Bagnold’s (1980) empirical correlation of bedload transport rates

Bagnold’s (1980) proposed an empirical expression for the prediction of bedload transport rates as follows:
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where the starred values refer to any single point on a reliable experimental plot. Bagnold (1980) chose the following reference values based on Williams’ (1970) data :
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The definitions for other variables in Eq(i) are :

	Y
	=
	mean depth of flow (m)

	D
	=
	mode size of bed material (m)
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